

Introduction

- None-photonic lepton has been a successful tool in studying heavy quark behavior in QGP
- ▶ Given a jet detected, lepton tagging in or near the jet cone could enhance HF jet fraction due to larger fraction of B(->d)->e decay than h->e decays.
 - Benefit:
 - Not necessarily require a DCA capability. No additional sPHENIX detector required
 - (Largely) orthogonal to and cross check life-time-based B tagging: e.g. DCA-track-counting and Secondary vertex mass methods
 - Cost: B->e branching ratio (~20%), electron identification efficiency, (b-tagging efficiency)
- Challenge:
 - Exploring possibility @ RHIC energy
 - Signal/background ratio
 - Optimization both in $j_{T,e}$ and DCA_e
 - Statistics

CMS studies (muon tagging)

Electron ID

- Choice of electron leads to difference background than muons
- sPHENIX use EMCal + inner HCal to reject to
 - >100:1 in pp
 - ~100:1 in inclusive tracks in Central 10% AuAu
 - ??:1 for electron candidate near a jet <- TODOs
- One recent de-scoping option involves reduce scope of the EMCal
 - Reduce readout channel by ganging tower together for readout
 - Reduce tower count by cut eta coverages

EM-Shower shape as observed in readout

8 GeV e- shower in 2D proj. SPACAL around eta = 0

Larger spread of shower core requires larger cluster to contain, which pickup higher portion of hadronic shower and higher event background

tower

One readout per 2x2 tower

Jin Huang <jhuang@bnl.gov>

Cluster size comparison

In Hijing –2D SPACAL summary: h-

10% Central Hijing embedding in 1D/2D proj. SPACAL

Two-tower width

One readout per tower

One readout per 2x2 tower Cluster size x (1.2x1.2)

Work Plan

- First iteration: Pythia based B-jet finding eff. Rej. with ideal detector
- Second iteration: Introduce detector efficiency/purity and produce eff. Rejection curves
- Third iteration: Evaluate in Hijing, with background and FF modifications
- Help and suggestion welcomed!

Extra information

PHENIX HF Electron data

Single Particle Summary: h-

Single negatively charged particle 2/4/8 GeV shower in 2D proj. SPACAL

One readout per tower

One readout per 2x2 tower Cluster size x (1.2x1.2)

